

First Results from an Airborne Ka-band SAR using SweepSAR and Digital Beamforming

Gregory Sadowy, Hirad Ghaemi, Scott Hensley

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91109

9th European Conference on Synthetic Aperture Radar April 24th, 2012, Nuremburg, Germany

Outline

- SweepSAR Introduction
- SweepSAR Airborne Demonstration Description
 - Antenna System
 - Digital Beamforming System
- Airborne Experiment
- Calibration and Beamforming Techniques
- Results and Images
- Future Plans

Proposed DESDynl Earth Radar Mission Overview

DESDynl: Deformation

Ecosystem **S**tructure

Dynamics of Ice

Mission Objectives:

- Determine the likelihood of earthquakes, volcanic eruptions, and landslides.
- Predict the response of ice sheets to climate change and impact on sea level.
- Characterize the effects of changing climate and land use on species habitats and carbon budget.
- · Understand the behavior of subsurface reservoirs.

http://desdyni.jpl.nasa.gov/

SweepSAR Introduction

Advantages

- On Transmit, all Feed Array elements are illuminated (maximum Transmit Power), creating the wide elevation beam
- On Receive, the Feed Array element echo signals are processed individually, taking advantage of the full Reflector area (maximum Antenna Gain)
- Uses digital beamforming to provide wide measurement swath
 - DBF allows multiple simultaneous echoes in the swath to be resolved by angle of arrival
- Uses large reflector to provide high aperture gain
 - Full-size azimuth aperture for both transmit and receive
 - Full-sized elevation aperture on receive
 - Aperture size effectively reduced on transmit to provide full-swath illumination
- Only need to store and process data from feed array elements being illuminated by an echoes
 - This can be predicted with a priori knowledge of measurement geometry (orbit, pulse timing and topography)

SweepSAR Pulse Timing

Conventional Radar data acquisition timing – Receive Window is within the Inter-Pulse Period (IPP):

SweepSAR wide-swath data acquisition timing – Receive Window extent is longer than an IPP:

 The Receive channels ("Rx Beams") that are active during a Transmit event are blanked for the duration of the Transmit pulse, resulting in gaps in the swath

SweepSAR Airborne Demo

• Now that the shuttle has finished flying...

Surprisingly, this concept was rejected.

SweepSAR Airborne Demo Overview

- Ka-band (35.6 GHz) airborne SweepSAR using arrayfed reflector and digital beamforming
 - 8 simultaneous receive beams generated by 40-cm offset-fed reflector an 8-element active array feed
 - 8 digital receiver channels, all raw data recorded
 - Receive antenna system is approximately 1/28th scale of proposed DESDynI SAR antenna
 - 16-channel capable, only 8 channels used during initial experiment
- Supports radar instrument development and risk mitigation for proposed DESDynI mission:
 - Demonstrates first-of-a-kind, real-world performance of SweepSAR with array-fed reflector
 - Reduces risk by shaking out engineering issues that are not predicted by simulation
 - Demonstrates performance of critical beamforming and calibration techniques
 - Identify, quantify and mitigate error sources
 - Trade algorithm performance vs. computational resource consumption

NASA DC-8

SweepSAR Demo Block Diagram

SweepSAR Airborne Demo Hardware

DC-8 Nadir-2 Port Pressure Box

16-channel Digital Receiver Array (Mounts on top plate, not shown in solid model)

Inertial Measurement Unit

40 cm Reflector

Radome

High-stability feed arm

16-channel Active Receiver Feed

Transmit Array

Transmit Antenna

- Dip-brazed, slotted waveguide array (JPL design)
- Approximate dimensions: 50 cm (azimuth) x 2 cm (elevation)
- Beamwidth: 1 degree (azimuth) x 20 degrees (elevation)
- Successful design from GLISTIN Airborne Interferometer

Ka-band Receive Feed Array

- 32 microstrip patch radiators arranged in 16 pairs
- One low-noise amplifier (LNA) for every pair
- Low-loss temperature stable substrate
- Embedded calibration signal injection path
 - Calibration data collected continuous during flight
- 16 connectors on back connect to DBF array using phase stable coaxial cables

16-channel Active Receiver Feed

Digital Beamforming Architecture

Beamforming Data System

- 16 L-band Digital Receivers
 - 16 Ka-band signals are converted to L-band
- Two parallel FPDP data busses (8 receivers each)
- Aggregator board multiplexes all data streams on to as single serial FPDP connection
- All data is written to a high speed disk array (JBOD – "just a bunch of disks")

16-channel Digital Receiver Array

DBF System Block Diagram

ADC DMUX FPGA DC Bias Board To cm RF Board To cm

L-band Digital Receiver

- Input 1215-1300 MHz
- Input analog bandwidth: 3.3 GHz
- Sample rate 240 Ms/s @ 10 bits resolution
- Digital demodulation and filtering using Xilinx Virtex 5 FPGA
- Output bandwidth: 80 MHz
- Data output over front-panel data port (FPDP)

Hardware Photos

Predicted Beamforming Performance

- Studied beamforming performance
 - HFSS used to generate feed patterns
 - Ticra GRASP used to model reflector/feed system
- Modeling included feed blockage and obstructions at edge of beam due to antenna mounting in aircraft
- Feed blockage causes small reduction in gain as well as gain ripples across the swath
- Similar to proposed DESDynl antenna models

Predicted SNR and Azimuth Ambiguity Performance

- Excellent sensitivity (-35 dB NESZ) using 20 us pulse
- Enough SNR margin to still have good sensitivity for short-pulse experiment modes (2us)
- Azimuth ambiguities < -20 dB (1350 Hz PRF)
- No significant range ambiguities using normal PRF
 - Can deliberately introduce range ambiguities and data collection gaps using staggered PRF scheme to place multiple pulses in swath

Measured Receive Antenna Patterns

- Complex antenna patterns (amplitude and phase) measured for the 8 receive beams.
- Beamwidth is approximately 1° and the peak sidelobe level is around -10 dB.

Elevation cut of Rx Antenna Patterns

Radar Parameters and Mapping Geometry

The eight beams map a swath extending from 33.3°-39.5° that gives a swath width of 1.4 km.

Radar Parameters

SweepSAR Test Site

- **Data Collection Flights**
 - Data collected using corner reflectors deployed in radar dark areas at Edwards AFB
 - Two sites identified:
 - Rosamond Lake UAVSAR calibration array with large 2.4 m reflectors
 - Rogers Lake Smaller 1 m reflectors deployed
 - Reflector spacing designed to effectively measure beamformed pattern performance

Rosamond Lake

Rogers Lake

R1

Heading Flight Direction 80°

SweepSAR Demo Successful Test Flights

Flight Track and Swaths for Flight #2

SweepSAR Demo Flight Team

- SweepSAR Flight History
 - Two flights flown on July 7 and July 9, 2011
 - 3.5 hours per flight
 - 12 data collection lines
 - >200 GB collect during Flight #2
- Flight 1 used a PRF of 100 Hz so was not critically sampled in azimuth but showed we had a functioning radar!
- Data quality for Flight @2 is good except for gain anomaly on receiver #4

Raw Radar Data (Rogers Lake, Beam #5)

Individual Beam Imagery

Power Profiles

- Power profiles are in reasonable agreement with measured antenna patterns.
- Note power in channel 4 and 8 are low as expected from the spectral plots.

Channel Spectra

- Range spectra were generated for the 8 receive channels.
 - Power on channel 8 is low relative to the other channels by 3-5 dB.
 - Channel 4 is lower in power and shows a distorted spectrum.
 - Still able to form imagery on Channel 4, however it presents a problem to beam forming.

Corner Reflector Image

 Simple maximum power combining algorithm used to generate a simple mosaic of the individual beam images.

Beam Mosaic Image

Beam Number Image

Google Earth Image

SweepSAR Demo Receive Array Calibration

Antenna Range Calibration

Pattern Measurement: $S_{AB} S_{BC} P_R(N, \theta_R) S_{DE}(N) S_{EQ}(N) S_{QF}(N) S_{FR}$ NF Range Calibration: $S_{AB} S_{BH} S_{HE}(N) S_{EQ}(N) S_{QF}(N)$

- S_{XY} is complex transmission from point x to point (either through components or free space)
- S_{xy}(N) varies by element number
- $P(N,\theta)$ is far-field antenna pattern (varies by element number and angle of arrival)
- σ is the complex reflection from target T

Remove factors independent of N:

- NFPat: $P_R(N, \theta_R) S_{DE}(N) S_{EQ}(N) S_{QF}(N)$
- NFCal: $S_{HF}(N) S_{FO}(N) S_{OF}(N)$

SweepSAR Demo Operation

Radar: $S_{PJ}S_{JL}P_T(\theta_T)S_{LT}(\theta_T) \sigma S_{TD}(N) P_R(N,\theta_R) S_{DE}(N) S_{EQ}(N) S_{QF}(N) S_{FM}(N)$ Airborne Calibration: $S_{PJ}S_{JH}S_{HE}(N) S_{EQ}(N) S_{GF}(N) S_{FM}(N)$

- Radar: $S_{TD}(N) = P_R(N, \theta_R) S_{DE}(N) S_{EQ}(N) S_{QF}(N) S_{FM}(N)$ $P_R'(N, \theta_R)$
- AirCal: $S_{HE}(N) S_{EQ}(N) S_{QF}(N) S_{FM}(N)$
- AirCal / NFCal = $S_{FM}(N)$
- $P'_R(N, \theta_R) = (NFPat/NFCal)(AirCal)$
- $P_R'(N, \theta_R)$ is effective element pattern used for DBF

SweepSAR Digital Beam Forming Algorithm

Rogers Lake Beam Formed Imagery

Pass 11 imagery before and after beam forming.

Simple Mosaic

Beamformed Image

Corner Reflectors Images

Beamformed Image

Google Earth

Calibration Values vs. Echo Power

- Pass #3 and #11 are same uniform lake bed scene
- Measured calibration signal tracks w/ echo power
- Functions even with low SNR, unstable receiver (#4)

Point-Target Responses

- As expected, no degradation in azimuth response
- Minor degradation of range sidelobes due to digital beamforming errors

Palmdale, CA Beamformed Imagery

Beamformed Ka-band SweepSAR Image

Visible image (Google Earth)

Conclusions

- NASA/JPL has developed SweepSAR technique that breaks typical SAR trade space using time-dependent multi-beam DBF on receive
- Developing SweepSAR implementation using array-fed reflector for proposed DESDynI Earth Radar Mission concept
- Performed first-of-a-kind airborne demonstration of the SweepSAR concept at Ka-band (35.6 GHz).
- Validated calibration and antenna pattern data sufficient for beam forming in elevation.
 - Provides validation evidence that the proposed DESDynI SAR architecture is sound.
 - Functions well even with large variations in receiver gain / phase
- Future plans include using prototype DESDynI SAR digital flight hardware to do the beam forming in real-time onboard the aircraft.

Acknowledgements

- The JPL SweepSAR Airborne Demonstration Team:
 - Roger Chao, Ernie Chuang, Hirad Ghaemi, Brandon Heavey, Scott Hensley, Eric Liao, Sean Lin, Timothy Miller, Dragana Perkovic, Momin Quddus, Jan Martin, Thierry Michel, Mauricio Sanchez- Barbetty, Scott Shaffer, Joanne Shimada, Jordan Tanabe, Tushar Thrivikraman
- Thanks to the NASA Airborne Science DC-8 team for providing great support, in particular:
 - Frank Cutler, Adam Webster, Ron Wilcox (NASA Dryden Flight Research Center)
- Work funded by and performed in support of the proposed DESDynl Earth Radar Mission

This work was performed at the Jet Propulsion Laboratory / California Institute of Technology under contract with the National Aeronautics and Space Administration.

Thank you for your attention!